World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Plos Genetics : Collapse of Telomere Homeostasis in Hematopoietic Cells Caused by Heterozygous Mutations in Telomerase Genes, Volume 8

By Barsh, Gregory S.

Click here to view

Book Id: WPLBN0003941647
Format Type: PDF eBook :
File Size:
Reproduction Date: 2015

Title: Plos Genetics : Collapse of Telomere Homeostasis in Hematopoietic Cells Caused by Heterozygous Mutations in Telomerase Genes, Volume 8  
Author: Barsh, Gregory S.
Volume: Volume 8
Language: English
Subject: Journals, Science, Genetics
Collections: Periodicals: Journal and Magazine Collection (Contemporary), PLoS Genetics
Historic
Publication Date:
Publisher: Plos

Citation

APA MLA Chicago

Barsh, G. S. (n.d.). Plos Genetics : Collapse of Telomere Homeostasis in Hematopoietic Cells Caused by Heterozygous Mutations in Telomerase Genes, Volume 8. Retrieved from http://members.worldlibrary.net/


Description
Description : Telomerase activity is readily detectable in extracts from human hematopoietic stem and progenitor cells, but appears unable to maintain telomere length with proliferation in vitro and with age in vivo. We performed a detailed study of the telomere length by flow FISH analysis in leukocytes from 835 healthy individuals and 60 individuals with reduced telomerase activity. Healthy individuals showed a broad range in average telomere length in granulocytes and lymphocytes at any given age. The average telomere length declined with age at a rate that differed between age-specific breakpoints and between cell types. Gender differences between leukocyte telomere lengths were observed for all cell subsets studied: interestingly, this trend could already be detected at birth. Heterozygous carriers for mutations in either the telomerase reverse transcriptase (hTERT) or the telomerase RNA template (hTERC) gene displayed striking and comparable telomere length deficits. Further, non-carrier relatives of such heterozygous individuals had somewhat shorter leukocyte telomere lengths than expected: this difference was most profound for granulocytes. Failure to maintain telomere homeostasis as a result of partial telomerase deficiency is thought to trigger cell senescence or cell death, eventually causing tissue failure syndromes. Our data are consistent with these statements and suggest that the likelihood of similar processes occurring in normal individuals increases with age. Our work highlights the essential role of telomerase in the hematopoietic system and supports the notion that telomerase levels in hematopoietic cells, while limiting and unable to prevent overall telomere shortening, are nevertheless crucial to maintain telomere homeostasis with age.

 

Click To View

Additional Books


  • Plos Genetics : Inositol 1,4,5-trisphosp... (by )
  • Plos Genetics : the Impact of Divergence... (by )
  • Plos Genetics : Exploring Microbial Dive... (by )
  • Plos Genetics : Integrating Genome-wide ... (by )
  • Plos Genetics : Genetic Crossovers Are P... (by )
  • Plos Genetics : Pre-disposition and Epig... (by )
  • Plos Genetics : Derepression of the Plan... (by )
  • Plos Genetics : Atx1-generated H3K4Me3 i... (by )
  • Plos Genetics : Integrated Model of De N... (by )
  • Plos Genetics : Adaptive Mutations in th... (by )
  • Plos Genetics : the Paramecium Germline ... (by )
  • Plos Genetics : Rnai Screening Implicate... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.