World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Features of Energetic Particle Radial Profiles Inferred from Geosynchronous Responses to Solar Wind Dynamic Pressure Enhancements : Volume 27, Issue 2 (19/02/2009)

By Shi, Y.

Click here to view

Book Id: WPLBN0003978770
Format Type: PDF Article :
File Size: Pages 9
Reproduction Date: 2015

Title: Features of Energetic Particle Radial Profiles Inferred from Geosynchronous Responses to Solar Wind Dynamic Pressure Enhancements : Volume 27, Issue 2 (19/02/2009)  
Author: Shi, Y.
Volume: Vol. 27, Issue 2
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Zesta, E., Lyons, L. R., & Shi, Y. (2009). Features of Energetic Particle Radial Profiles Inferred from Geosynchronous Responses to Solar Wind Dynamic Pressure Enhancements : Volume 27, Issue 2 (19/02/2009). Retrieved from

Description: Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095-1565, USA. Determination of the radial profile of phase space density of relativistic electrons at constant adiabatic invariants is crucial for identifying the source for them within the outer radiation belt. The commonly used method is to convert flux observed at fixed energy to phase space density at constant first, second and third adiabatic invariants, which requires an empirical global magnetic field model and thus might produce some uncertainties in the final results. From a different perspective, in this paper we indirectly infer the shape of the radial profile of phase space density of relativistic electrons near the geosynchronous region by statistically examining the geosynchronous energetic flux response to 128 solar wind dynamic pressure enhancements during the years 2000 to 2003. We thus avoid the disadvantage of using empirical magnetic field models. Our results show that the flux response is species and energy dependent. For protons and low-energy electrons, the primary response to magnetospheric compression is an increase in flux at geosynchronous orbit. For relativistic electrons, the dominant response is a decrease in flux, which implies that the phase space density decreases toward increasing radial distance at geosynchronous orbit and leads to a local peak inside of geosynchronous orbit. The flux response of protons and non-relativistic electrons could result from a phase density that increases toward increasing radial distance, but this cannot be determined for sure due to the particle energization associated with pressure enhancements. Our results for relativistic electrons are consistent with previous results obtained using magnetic field models, thus providing additional confirmation that these results are correct and indicating that they are not the result of errors in their selected magnetic field model.

Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements

Wang, C.-P., Lyons, L. R., Chen, M. W., and Wolf, R. A.: Modeling the quiet time inner plasma sheet protons, J. Geophys. Res., 106, 6161–6178, 2001.; Borodkova, N. L., Zastenker, G. N., Riazantseva, M., and Richardson, J. D.: Large and sharp solar wind dynamic pressure variations as a source of geomagnetic field disturbances at the geosynchronous orbit, Planet. Space Sci., 53, 25–32, 2005.; Chen, Y., Friedel, R. H. W., Reeves, G. D., Onsager, T. G., and Thomsen, M. F.: Multisatellite determination of the relativistic electron phase space density at geosynchronous orbit: Methodology and results during magnetically quiet time, J. Geophys. Res., 110, A10210, doi:10.1029/2004JA010895, 2005.; Chen, Y., Reeves, G. D., and Friedel, R. H. W.: The energization of relativistic electrons in the outer Van Allen radiation belt, Nature Phys., 3, 614–617, doi:10.1038/nphys655, 2007.; Friedel, R. H. W., Reeves, G. D., and Obara, T.: Relativistic electron dynamics in the inner magnetosphere-a review, J. Atmos. Solar Terr. Phys., 64, 265–282, 2002.; Green, J. C. and Kivelson, M. G.: Relativistic electron in the outer radiation belt: Differentiating between acceleration mechanisms, J. Geophys. Res., 109, A03213, doi:10.1029/2003JA010153, 2004.; Hilmer, R. V., Ginet, G. P., and Cayton, T. E.: Enhancement of equatorial energetic electron fluxes near L=4.2 as a result of high speed solar wind stream, J. Geophys. Res., 105, 23311–23322, 2000.; Hudson, M. K., Elkington, S. R, Lyon, J. G., Marchenko, V. A., Roth, I., Temerin, M., Blake, J. B., Gussenhoven, M. S., and Wygant, J. R.: Simulation of radiation belt formation during storm sudden commencements, J. Geophys. Res., 102, 14087–14102, 1997.; Hudson, M. K., Kress, B. T., Mueller, H., Zastrow, J. A., and Blake, J. B.: Relationship of the Van Allen radiation belts to solar wind drivers, J. Atmos. Solar Terr. Phys., 70, 708–729, 2008.; Iles, R. H. A., Meredith, N. P., Fasakerley, A. N., and Horne, R. B.: Phase space density analysis of the outer radiation belt energetic electron dynamics, J. Geophys. Res., 111, A03204, doi:10.1029/2005JA011206, 2006.; Iyemori, T. and Rao, D. R. K.: Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation, Ann. Geophys., 14, 608–618, 1996.; Lee, D.-Y., Lyons, L. R., and Reeves, G. D.: Comparison of geosynchronous energetic particle flux responses to solar wind dynamic pressure enhancements and substorms, J. Geophys. Res., 110, A09213, doi:10.1029/2005JA011091, 2005.; Li, X., Baker, D. N., Temerin, M., Caytoy, T., Reeves, G. D., Araki, T., Singer, H., Larson, D., Lin, R. P., and Kanekal, S. G.: Energetic electron injections into the inner magnetosphere during Jan. 10–11, 1997 magnetic storm, Geophys. Res. Lett., 25, 2561–2564, 1998.; Li, X., Baker, D. N., Elkington, S., Temerin, M., Reeves, G. D., Belian, R. D., Blake, J. B., Singer, H. J., Peria, W., and Parks, G.: Energetic particle injections in the inner magnetosphere as a response to an interplanetary shock, J. Atmos. Solar Terr. Phys., 65, 233–244, 2003.; Li, X., Roth, I., Temerin, M., Wygant, J. R., Hudson, M. K., and Blake, J. B.: Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, Geophys. Res. Lett., 20, 2423–2426, 1993.; Lyatsky, W. and Khazanov, G. V.: Effect of solar wind density on relativistic electrons at geosynchronous orbit, Geophys. Res. Lett., 35, L03109, doi:10.1029/2007GL032524, 2008.; Lyons, L. R.: Magnetospheric processes leading to precipitation, Space Sci. Rev., 80, 109–132, 1997.; Lyons, L. R. and Thorne, R.: Equilibrium structure of radiation belt electrons, J. Geophys. Res., 78(13), 2142–2149, 1973.; McAdams, K. L., Reeves, G. D., Friedel, R. H. W., and Cayton, T. E.: Multisatellite comparisons of the radiation belt response to the Geospace Environment Modeling (GEM) magnetic storms, J. Geophys. Res., 106, 10869–10882, 2001.; Onsager, T., Chan, A., Fei, Y., Elkington, S.


Click To View

Additional Books

  • Influence of the Finite Ionospheric Cond... (by )
  • Interhemispheric Observations of the Ion... (by )
  • Analysis and Parameterisation of Ionic R... (by )
  • The Climatology of Ionospheric Plasma Bu... (by )
  • Self-consistent Modelling of the Daytime... (by )
  • A Statistical Study of Sporadic Sodium L... (by )
  • Observations of No in the Upper Mesosphe... (by )
  • Relative Drift Between Black Aurora and ... (by )
  • On the Propagation of Mhd Eigenmodes in ... (by )
  • Bora-induced Currents Corresponding to D... (by )
  • Strataq: a Three-dimensional Chemical Tr... (by )
  • Size Distribution of Near-surface Aeroso... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.