World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Solid Charged-core Model of Ball Lightning : Volume 28, Issue 1 (22/01/2010)

By Muldrew, D. B.

Click here to view

Book Id: WPLBN0003982699
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Solid Charged-core Model of Ball Lightning : Volume 28, Issue 1 (22/01/2010)  
Author: Muldrew, D. B.
Volume: Vol. 28, Issue 1
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2010
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Muldrew, D. B. (2010). Solid Charged-core Model of Ball Lightning : Volume 28, Issue 1 (22/01/2010). Retrieved from http://members.worldlibrary.net/


Description
Description: 16 Elmsley Crescent, Ottawa, K2H 6V2, Canada. In this study, ball lightning (BL) is assumed to have a solid, positively-charged core. According to this underlying assumption, the core is surrounded by a thin electron layer with a charge nearly equal in magnitude to that of the core. A vacuum exists between the core and the electron layer containing an intense electromagnetic (EM) field which is reflected and guided by the electron layer. The microwave EM field applies a ponderomotive force (radiation pressure) to the electrons preventing them from falling into the core. The energetic electrons ionize the air next to the electron layer forming a neutral plasma layer. The electric-field distributions and their associated frequencies in the ball are determined by applying boundary conditions to a differential equation given by Stratton (1941). It is then shown that the electron and plasma layers are sufficiently thick and dense to completely trap and guide the EM field. This model of BL is exceptional in that it can explain all or nearly all of the peculiar characteristics of BL. The ES energy associated with the core charge can be extremely large which can explain the observations that occasionally BL contains enormous energy. The mass of the core prevents the BL from rising like a helium-filled balloon – a problem with most plasma and burning-gas models. The positively charged core keeps the negatively charged electron layer from diffusing away, i.e. it holds the ball together; other models do not have a mechanism to do this. The high electrical charges on the core and in the electron layer explains why some people have been electrocuted by BL. Experiments indicate that BL radiates microwaves upon exploding and this is consistent with the model. The fact that this novel model of BL can explain these and other observations is strong evidence that the model should be taken seriously.

Summary
Solid charged-core model of ball lightning

Excerpt
Ashby, D. E. T. F. and Whitehead, C.: Is ball lightning caused by antimatter meteorites?, Nature, 230, 180–182, 1971.; Abrahamson, J.: Ball lightning from atmospheric discharges via metal nanosphere oxidation: from soils wood or metal, Phil. Trans. R. Soc. Lond. A, 360, 61–88, 2002.; Abrahamson, J. and Dinniss, J.: Ball lightning caused by oxidation of nanoparticle networks from natural strikes on soil, Nature, 403, 519–521, 2000.; Altschuler, M. D., House, L. L., and Hildner, E.: Is ball lightning a nuclear phenomenon?, Nature, 228, 545–546, 1970.; Banks, P. M. and Kockarts, G.: Aeronomy, Academic, Orlando, Fla., 1973.; Barry, J. D.: Ball Lightning and Bead Lightning, Prenum Press, New York, 1980.; Budden, K. G.: The Wave-Guide Mode Theory of Wave Propagation, Prentice-Hall Inc., Englewood Cliffs, N. J., 1961a.; Budden, K. G.: Radio Waves in the Ionosphere, Cambridge Univ. Press, New York, 1961b.; Charman, W. N.: Ball lightning, Phys. Rep., 54, 261–306, 1979.; Corliss, W. R.: Lightning, Auroras, Nocturnal Lights, and Related Luminous Phenomena, pp. 162–163, Published by the Sourcebook Project, P.O Box~107, Glen Arm, Maryland, 1982.; Dawson G. A. and Jones, R. C.: Ball lightning as a radiation bubble, Pure Appl. Geophys., 75, 247–262, 1969.; Dikhtyar, V. and Jerby, E.: Fireball ejection from a molten hotspot to air by localized microwaves, Phys. Rev. Lett., 96, 045002-1–045002-4, 2006.; Dmitriev, M. T.: Stability mechanism for ball lightning, Sov. Phys. Tech. Phys., 14, 284–289, 1969.; Dmitriev, M. T., Bakhtin, B. I., and Martynov, V. I.: Thermal effects of ball lightning, Sov. Phys. Tech. Phys., 26, 1518–1520, 1981.; Endean, V. G.: Ball lightning as electromagnetic energy, Nature, 263, 753–754, 1976.; Fejer, J. A.: Ionospheric modification and parametric instabilities, Rev. Geophys., 17, 135–153, 1979.; Golka, R.: Laboratory-produced ball lightning, J. Geophys. Res., D99, 10679–10681, 1994.; Goodlet, B. L.: Ball and bead lightning, J. Inst. Elec. Eng., 81, 1–56 (see pp 32 and 55), 1937.; Hopple, W. A.: Theory of the electrode effect, J. Atmos. Terr. Phys., 29, 709–721, 1967.; Jones, A. T.: A laboratory illustration of ball lightning, Science, 31, 144, 1910.; Koslov, B. N.: Maximum energy liberation by ball lightning, Sov. Phys. Dokl., 23, 41–42, 1978.; Kuhn, E.: Ein Kugelblitz auf einr Moment-Aufnahme?, Naturwiss., 38, 518–519, 1951.; Meunier, M. S.: Substance singulière recueillie à la suite d'un météore rapporté à la foudre, Comptes Rendus, 103, 837–840, 1886.; Muldrew, D. B.: The physical nature of ball lightning, Geophys. Res. Lett., 17, 2277–2280, 1990.; Paiva, G. S., Paväo, A. C., de Vasconcelos, E. P., Mendes Jr., O., and da Silva Jr., E. F.: Production of ball-lightning-like luminous balls by electric discharge in silicon, Phys. Rev. Lett., 98, 048501-1–04508-4, 2007.; Potts, L. M.: Ball lightning, Science, 31, 144, 1910.; Schmidt, G.: Virial theorem for plasmas, Phys. Fluids, 3, 481–482, 1960.; Silberg, P. A.: Ball lightning and plasmoids, J. Geophys. Res., 67, 4941–4942, 1962.; Singer, S.: The Nature of Ball Lightning, Plenum Press, New York, 1971.; Smirnov, B. M.: Observational properties of ball lightning, Sov. Phys. Usp., 35, 650–670, 1992.; Spitzer Jr., L.: Physics of Fully Ionized Gases, Interscience Publishers, New York, p. 24–25, 1962.; Stephan, K. D. and Massey, N.: Burning molten metallic spheres: one class of ball lightning?, J. Atmos. Solar Terr. Phys., 70, 1589–1596, 2008.; Stratton, J. A.: Electromagnetic Theory, McGraw-Hill, London, 1941.; Turpain, M. A.: Curieux effets d'un coup de foudre sur une antenne réceptrice d'onde électriques, J. de Physique, 1, 372–382, 1911.; Webber, H.: A case of globular lightning, J. Roy. Astron. Soc. Can., 1, 44, 1907.

 

Click To View

Additional Books


  • Case Studies on the Dynamics of Pi3 Geom... (by )
  • Nonlinear Wave Interactions of Kinetic S... (by )
  • First Results from Ideal 2-d Mhd Reconst... (by )
  • A Multi-spacecraft Survey of Magnetic Fi... (by )
  • First Simultaneous Measurements of Waves... (by )
  • Letter to the Editor: a Comparison of F-... (by )
  • Pre-earthquake Ionospheric Anomalies Reg... (by )
  • Current-voltage Relationship in the Auro... (by )
  • Ion and Neutral Temperature Distribution... (by )
  • Regional Representation of F2 Chapman Pa... (by )
  • Multi-instrument Observations of the Ele... (by )
  • High-latitude Ionospheric Currents Durin... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.