World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Cloud Particle Size Distributions Measured with an Airborne Digital In-line Holographic Instrument : Volume 2, Issue 2 (03/03/2009)

By Fugal, J. P.

Click here to view

Book Id: WPLBN0003987370
Format Type: PDF Article :
File Size: Pages 30
Reproduction Date: 2015

Title: Cloud Particle Size Distributions Measured with an Airborne Digital In-line Holographic Instrument : Volume 2, Issue 2 (03/03/2009)  
Author: Fugal, J. P.
Volume: Vol. 2, Issue 2
Language: English
Subject: Science, Atmospheric, Measurement
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Fugal, J. P., & Shaw, R. A. (2009). Cloud Particle Size Distributions Measured with an Airborne Digital In-line Holographic Instrument : Volume 2, Issue 2 (03/03/2009). Retrieved from

Description: Physics Dept., Michigan Technological University, Houghton, MI 49931, USA. Holographic data from the prototype airborne digital holographic instrument HOLODEC (Holographic Detector for Clouds), taken during test flights are digitally reconstructed to obtain the size (equivalent diameters in the range 23 to 1000 μm), three-dimensional position, and two-dimensional profile of ice particles and then ice particle size distributions and number densities are calculated using an automated algorithm with minimal user intervention. The holographic method offers the advantages of a well-defined sample volume size that is not dependent on particle size or airspeed, and offers a unique method of detecting shattered particles. The holographic method also allows the volume sample rate to be increased beyond that of the prototype HOLODEC instrument, limited solely by camera technology.

HOLODEC size distributions taken in mixed-phase regions of cloud compare well to size distributions from a PMS FSSP probe also onboard the aircraft during the test flights. A conservative algorithm for detecting shattered particles utilizing the particles depth-position along the optical axis eliminates the obvious ice particle shattering events from the data set. In this particular case, the size distributions of non-shattered particles are reduced by approximately a factor of two for particles 15 to 70 μm in equivalent diameter, compared to size distributions of all particles.

Cloud particle size distributions measured with an airborne digital in-line holographic instrument

Baum, B. A., Heymsfield, A. J., Yang, P., and Bedka, S.: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models, J. Appl. Meteor., 44, 1885–1895, 2005{a}.; Baum, B. A., Yang, P., Heymsfield, A. J., Platnick, S., King, M. D., Hu, Y.-X., and Bedka, S.: Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models, J. Appl. Meteor., 44, 1896–1911, 2005{b}.; Baumgardner, D. and Korolev, A. J.: Airspeed corrections for optical array probe sample volumes, J. Atmos. Ocean. Technol., 14, 1224–1229, 1997.; Borrmann, S. and Jaenicke, R.: Application of microholography for ground-based in situ measurements in stratus cloud layers: a case study, J. Atmos. Ocean. Technol., 10, 277–293, 1993.; Brown, P. R. A.: Use of Holography for Airborne Cloud Physics Measurements, J. Atmos. Ocean. Technol., 6, 293–306, 1989.; Cober, S. G., Isaac, G. A., and Korolev, A. V.: Assessing the Rosemount Icing Detector with in situ measurements, J. Atmos. Ocean. Technol., 18, 515–528, 2001.; Field, P. R., Baran, A. J., Kaye, P. H., Hirst, E., and Greenaway, R.: A test of cirrus ice crystal scattering phase functions, Geophys. Res. Lett., 30, 1752, 2003{a}.; Field, P. R., Wood, R., Brown, P. R. A., Kaye, P. H., Hirst, E., Greenway, R., and Smith, J. A.: Ice particle interarrival times measured with a fast FSSP, J. Atmos. Ocean. Technol., 20, 249–261, 2003{b}.; Field, P. R., Heymsfield, A. J., and Bansemer, A.: Shattering and particle interarrival times measured by optical array probes in ice clouds, J. Atmos. Ocean. Technol., 23, 1357–1371, 2006.; Fugal, J. P., Shaw, R. A., Saw, E. W., and Sergeyev, A. V.: Airborne digital holographic system for cloud particle measurements, Appl. Optics, 43, 5987–5995, 2004.; Fugal, J. P., Schulz, T. J., and Shaw, R. A.: Practical methods for reconstruction and characterization of particles in digital inline holograms, Meas. Sci. Technol., submitted, 2008.; Gardiner, B. A. and Hallett, J.: Degradation of in-cloud forward scattering spectrometer probe measurements in the presence of ice particles, J. Atmos. Ocean. Technol., 2, 171–180, 1985.; Gayet, J.-F., Febvre, G., and Larsen, H.: The reliability of the PMS FSSP in the presence of small ice crystals, J. Atmos. Ocean. Technol., 13, 1300–1310, 1996.; Isaac, G. A., Korolev, A. V., Strapp, J. W., Cober, S. G., Boudala, F. S., Marcotte, D., and Reich, V. L.: Assessing the collection efficiency of natural cloud particles impacting the Nevzorov total water content probe, proceedings of 44th Aerospace Sciences Meeting and Exhibit, Am. Inst. Aeronaut. Astronaut., Reno, Nev., 9–12 Jan., 2006.; Korolev, A.: Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations, J. Atmos. Ocean. Technol., 24, 376–389, 2007.; Korolev, A. and Isaac, G.: Shattering during sampling by OAPs and HVPS. Part I: snow particles, J. Atmos. Ocean. Technol., 22, 528–542, 2005.; Korolev, A. V., Strapp, J. W., and Isaac, G. A.: Evaluation of the accuracy of PMS optical array probes, J. Atmos. Ocean. Technol., 15, 708–720, 1998{a}.; Korolev, A. V., Strapp, J. W., Isaac, G. A., and Nevzorov, A. N.: The Nevzorov airborne hot-wire LWC-TWC probe: Principle of operation and performance characteristics, J. Atmos. Ocean. Technol., 15, 1495–1510, 1998{b}.; Kozikowska, A., Haman, K., and Supronowicz, J.: Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method, Q. J. Roy. Meteorol. Soc., 110, 65–73, 1984.; Lawson, R. P. and Cormack, R. H.: Theoretical design and preliminary


Click To View

Additional Books

  • Evaporation from Weighing Precipitation ... (by )
  • Effects of Solar Activity and Geomagneti... (by )
  • Optical Property Retrievals of Subvisual... (by )
  • Improved Spectral Fitting of Nitrogen Di... (by )
  • Global Scale Remote Sensing of Water Iso... (by )
  • A Network of Autonomous Surface Ozone Mo... (by )
  • Spartan: a Global Network to Evaluate an... (by )
  • Implementation of a Quality Control for ... (by )
  • Multi-sensor Analysis of Convective Acti... (by )
  • Evaluation of Gridded Scanning Arm Cloud... (by )
  • Role of Coarse and Fine Mode Aerosols in... (by )
  • A Non-iterative Linear Retrieval for Inf... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.