World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Nonmigrating Tidal Signals in the Upper Thermospheric Zonal Wind at Equatorial Latitudes as Observed by Champ : Volume 27, Issue 7 (03/07/2009)

By Häusler, K.

Click here to view

Book Id: WPLBN0003987737
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Nonmigrating Tidal Signals in the Upper Thermospheric Zonal Wind at Equatorial Latitudes as Observed by Champ : Volume 27, Issue 7 (03/07/2009)  
Author: Häusler, K.
Volume: Vol. 27, Issue 7
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2009
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Häusler, K., & Lühr, H. (2009). Nonmigrating Tidal Signals in the Upper Thermospheric Zonal Wind at Equatorial Latitudes as Observed by Champ : Volume 27, Issue 7 (03/07/2009). Retrieved from http://members.worldlibrary.net/


Description
Description: GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany. The accelerometer onboard CHAMP enables us to derive the thermospheric zonal wind at orbit altitudes (~400 km). Numerous equatorial overflights (~45 250) are used to investigate the influence of nonmigrating tides on the thermospheric zonal wind. In a previous study a so called wave-4 longitudinally signal observed in the satellite frame was identified in the zonal wind residuals during equinox. Using four years of data (2002–2005), we determine the annual variation of this prominent feature which is strongest during the months of July through October and has a smaller second maximum during March/April. Due to the large data set we were able to separate the observed wavenumbers into the tidal components. Thereby, we can identify the eastward propagating diurnal tide with zonal wavenumber s=3 (DE3) as the prime cause for the observed wave-4 pattern in the zonal wind. Analyzing the zonal wind along the geographic and the dip equator revealed that the largest amplitudes of DE3 are found along the dip equator. Besides DE3 we present the full spectrum of nonmigrating tides in the upper thermosphere.

Summary
Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP

Excerpt
Chapman, S. and Lindzen, R. S.: Atmospheric Tides: Thermal and Gravitational. D. Reidel Publishing Company, Dordrecht, Holland, 1970.; England, S. L., Maus. S., Immel, T. L., and Mende, S. B.: Longitude variation of the E-region electric fields caused by atmospheric tides, Geophys. Res. Lett., 33, L21105, doi:10.1029/2006GL027465, 2006.; Forbes, J. M., Zhang, X., Palo, S., Russell, J., Mertens, C. J., and Mlynczak, M.: Tidal variability in the ionospheric dynamo region, J. Geophys. Res., 113, A02310, doi:10.1029/2007JA012737, 2008.; Forbes, J. M., Russell, J., Miyahara, S., Zhang, X., Palo, S., Mlynczak, M., Mertens, C. J., and Hagan, M. E.: Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July-September 2002, J. Geophys. Res., 111, A10S06, doi:10.1029/2005JA011492, 2006.; Forbes, J. M., Hagan, M. E., Miyahara, S., Miyoshi, Y., and Zhang, X.: Diurnal nonmigrating tides in the tropical lower thermosphere. Earth Planets Space, 55, 419–426, 2003.; Forbes, J. M.: Tidal and Planetary Waves, in: The upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophysical Monograph 87, edited by: Johnson, R. M. and Killeen, T. L., AGU, 1995.; Hagan, M. E., Maute, A., and Roble, R. G.: Tropospheric tidal effects on the middle and upper atmosphere, J. Geophys. Res., 114, A01302, doi:10.1029/2008JA013637, 2009.; Hagan, M. E., Maute, A., Roble, R. G., Richmond, A. D., Immel, T. J., and England, S. L.: Connections between deep tropical clouds and the Earth's ionosphere, Geophys. Res. Lett., 34, L20109, doi:10.1029/2007GL030142, 2007.; Hagan, M. E. and Forbes, J. M., Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 107(D24), 4754, doi:10.1029/2001JD001236, 2002.; Hagan, M. E. and Roble, R. G.: Modeling the diurnal tidal variability with the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model. J. Geophys. Res., 106, 24869–24882, 2001.; Hartman, W. A. and Heelis, R. A.: Longitudinal variations in the equatorial vertical drift in the topside ionosphere, J. Geophys. Res., 112, A03305, doi:10.1029/2006JA011773, 2007.; Häusler, K., Lühr, H., Hagan, M. E., Maute, A., and Roble, R. G.: Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind, J. Geophys. Res., in review, 2009.; Häusler, K., Lühr, H., Rentz, S., and Köhler, W.: A statistical analysis of longitudinal dependences of upper thermospheric zonal winds at dip equator latitudes derived from CHAMP, J. Atmos. Solar-Terr. Phys., 69, 1419–1430, doi:10.1016/j.jastp.2007.04.004, 2007.; Immel, T. J., Sagawa, E., England, S. L., Henderson, S. B., Hagan, M. E., Mende, S. B., Frey, H. U., Swenson, C. M., and Paxton, L. J.: Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, doi:10.1029/2006GL026161, 2006.; Kil, H., Oh, S.-J., Kelley, M. C., Paxton, L. J., England, S. L., Talaat, E., Min, K.-W., and Su, S.-Y.: Longitudinal structure of the vertical ExB drift and ion density seen from ROCSAT-1, Geophys. Res. Lett., 34, L14110, doi:10.1029/2007GL030018, 2007.; Lin, C. H., Wang, W., Hagan, M. E., Hsiao, C. C., Immel, T. J., Hsu, M. L., Liu, J. Y., Paxton, L. J., Fang, T. W., and Liu, C. H.: Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: Three-dimensional electron density structures, Geophys. Res. Lett., 34, L11112, doi:10.1029/2007GL029265, 2007.; Liu, H., Lühr, H., Watanabe, S., Köhler, W., Henize, V., and Visser, P.: Zonal winds in the equatorial upper thermosphere: decomposing the solar flux, geomagnetic activity, and seasonal dependencies, J. Geophys. Res., 111, A07307, doi:10.1029/2005JA011415, 2006.; Lowes, F. J. and Olsen, N.: A more realistic estimate of the variances and systematic errors in spherical harmonic geomagnetic field models, Geophys. J.

 

Click To View

Additional Books


  • Astrid-2 and Ground-based Observations o... (by )
  • Derivation of Inner Magnetospheric Elect... (by )
  • Transient Teleconnection Event at the On... (by )
  • Quantitative Aspects of the Galperin L P... (by )
  • Two-dimensional Current-carrying Plasma ... (by )
  • Response of Equatorial Ionosphere to Epi... (by )
  • Weak Ionization of the Global Ionosphere... (by )
  • Propagation of Short-period Gravity Wave... (by )
  • Ion Composition Measurements and Modelli... (by )
  • Simulation of the Interchange Instabilit... (by )
  • Non-tidal Aliasing in Seasonal Sea-level... (by )
  • Measurements and Modelling of Atmospheri... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.