World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Data-driven Exploration of Orographic Enhancement of Precipitation : Volume 6, Issue 1 (17/05/2011)

By Foresti, L.

Click here to view

Book Id: WPLBN0003988938
Format Type: PDF Article :
File Size: Pages 7
Reproduction Date: 2015

Title: Data-driven Exploration of Orographic Enhancement of Precipitation : Volume 6, Issue 1 (17/05/2011)  
Author: Foresti, L.
Volume: Vol. 6, Issue 1
Language: English
Subject: Science, Advances, Science
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2011
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Pozdnoukhov, A., Kanevski, M., & Foresti, L. (2011). Data-driven Exploration of Orographic Enhancement of Precipitation : Volume 6, Issue 1 (17/05/2011). Retrieved from http://members.worldlibrary.net/


Description
Description: Institute of Geomatics and Analysis of Risk, University of Lausanne, Switzerland. This study presents a methodology to analyse orographic enhancement of precipitation using sequences of radar images and a digital elevation model. Image processing techniques are applied to extract precipitation cells from radar imagery. DEM is used to derive the topographic indices potentially relevant to orographic precipitation enhancement at different spatial scales, e.g. terrain convexity and slope exposure to mesoscale flows. Two recently developed machine learning algorithms are then used to analyse the relationship between the repeatability of precipitation patterns and the underlying topography. Spectral clustering is first used to characterize stratification of the precipitation cells according to different mesoscale flows and exposure to the crest of the Alps. At a second step, support vector machine classifiers are applied to build a computational model which discriminates persistent precipitation cells from all the others (not showing a relationship to topography) in the space of topographic conditioning factors. Upwind slopes and hill tops were found to be the topographic features leading to precipitation repeatability and persistence. Maps of orographic enhancement susceptibility can be computed for a given flow, topography and forecasted smooth precipitation fields and used to improve nowcasting models or correct windward and leeward biases in numerical weather prediction models.

Summary
Data-driven exploration of orographic enhancement of precipitation

Excerpt
Frei, C.: Eine Länder übergreifende Niederschlagsanalyse zum August Hochwasser 2005. Ergänzung zu Arbeitsbericht 211., Tech. rep., Arbeitsbericht MeteoSchweiz Nr. 213, 2006.; Germann, U. and Zawadzki, I.: Scale-dependence of the Predictability of Precipitation From Continental Radar Images. Part I: Methodology, Mon. Weather Rev., 130, 2859–2873, 2002.; Gray, W. R. and Seed, A. W.: The characterisation of orographic rainfall, Meteorol. Appl., 7(2), 105–119, 2000.; Hartigan, J. A. and Wong, M. A.: A k-means clustering algorithm, Appl. Stat., 28, 100–108, 1979.; Bauer, H.-S., Weusthoff, T., Dorninger, M., Wulfmeyer, V., Schwitalla, T., Gorgas, T., Arpagaus, M., and Warrach-Sagi, K.: Predictive skill of a subset of models participating in D-PHASE in the COPS region, Q. J. Roy. Meteor. Soc., 137, 287–305, 2011.; Chang, C.-C. and Lin, C.-J.: LIBSVM: a library for support vector machines, Tech. rep., Software available at: http://www.csie.ntu.edu.tw/ cjlin/libsvm/, 2001.; Foresti, L. and Pozdnoukhov, A.: Exploration of alpine orographic precipitation patterns with radar image processing and clustering techniques, Meteorol. Appl., submitted, 2010.; Foresti, L., Tuia, D., Kanevski, M., and Pozdnoukhov, A.: Learning wind fields with multiple kernels, Stoch. Env. Res. Risk A., 25(1), 51–66, 2011.; Germann, U., Galli, G., Boscacci, M., and Bolliger, M.: Radar precipitation measurement in a mountainous region, Q. J. Roy. Meteor. Soc., 132(618), 1669–1692, 2006.; Lakshmanan, V., Rabin, R., and DeBrunner, V.: Multiscale storm identification and forecast, Atmos. Res., 67-68, 367–380, 2003.; Migliorini, S., Dixon, M., Bannister, R., and Ballard, S.: Ensemble prediction for nowcasting with a convection-permitting model – I: description of the system and the impact of radar-derived surface precipitation rates, Tellus A, 63(3), 468–496, doi:10.1111/j.1600-0870.2010.00503.x, 2011.; Ng, A. Y., Jordan, M. I., and Weiss, Y.: On spectral clustering: analysis and an algorithm, in: Advances on Neural Information Processing Systems, Vol. 14, 2001.; Panziera, L. and Germann, U.: The relation between airflow and orographic precipitation on the southern side of the Alps as revealed by weather radar, Q. J. Roy. Meteor. Soc., 136, 222–238, 2010.; Panziera, L., Germann, U., Gabella, M., and Mandapaka, P. V.: NORA – Nowcasting of orographic rainfall by means of analogs, Q. J. Roy. Meteor. Soc., submitted, 2010.; Philipp, A., Bartholy, J., Beck, C., Erpicum, M., Esteban, P., Fettweis, X., Huth, R., James, P., Jourdain, S., Kreienkamp, F., Krennert, T., Lykoudis, S., Michalides, S. C., Pianko-Kluczynska, K., Post, P., \'Alvarez, D. R., Schiemann, R., Spekat, A., and Tymvios, F. S.: Cost733cat – A database of weather and circulation type classifications, Phys. Chem. Earth, Parts A/B/C, Special Issue: Classifications of Atmospheric Circulation Patterns – Theory and Applications, 35(9–12), 360–373, 2010.; Pozdnoukhov, A., Foresti, L., and Kanevski, M.: Data-driven topo-climatic mapping with machine learning methods, Nat. Hazards, 50, 497–518, 2009.; Rotach, M., Appenzeller, C., and Albisser, P. E.: Meteoschweiz: 2006, Starkniederschlagsereignis August 2005, Tech. Rep. 211, Arbeitsberichte der MeteoSchweiz, 211, 63 pp., 22 pp., 2006.; Rotunno, R. and Houze, R. A.: Lessons on orographic precipitation from the Mesoscale Alpine Programme, Q. J. Roy. Meteor. Soc., 133, 811–830, 2007.; Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C.: Estimating the support of a high-dimensional distribution, Neural Comput., 13, 1443–1471, 2001.; Steinhaus, H.: Sur la division des corps en parties, Bulletin de l'academie polonaise de sciences, C1

 

Click To View

Additional Books


  • Quality Control Procedures at Euskalmet ... (by )
  • 1961–1990 High-resolution Northern and C... (by )
  • Observations and Wrf Simulations of Fog ... (by )
  • Comparative Verification of Different No... (by )
  • Synoptic-mesoscale Analysis and Numerica... (by )
  • Uv and Global Irradiance Measurements an... (by )
  • Development of a Longterm Dataset of Sol... (by )
  • Vince – a Case Study : Volume 2, Issue 1... (by )
  • Ten Years Water and Energy Surface Balan... (by )
  • Modelling Static 3-d Spatial Background ... (by )
  • Waterspout Cloud Top Detection Using Msg... (by )
  • 1961–1990 Monthly High-resolution Solar ... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.