World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Bromine and Iodine Chemistry in a Global Chemistry-climate Model: Description and Evaluation of Very Short-lived Oceanic Sources : Volume 11, Issue 10 (06/10/2011)

By Ordóñez, C.

Click here to view

Book Id: WPLBN0003995664
Format Type: PDF Article :
File Size: Pages 54
Reproduction Date: 2015

Title: Bromine and Iodine Chemistry in a Global Chemistry-climate Model: Description and Evaluation of Very Short-lived Oceanic Sources : Volume 11, Issue 10 (06/10/2011)  
Author: Ordóñez, C.
Volume: Vol. 11, Issue 10
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Tilmes, S., Blake, D. R., Kinnison, D. E., Saiz-Lopez, A., Ordóñez, C., Atlas, E. L.,...Lamarque, J. (2011). Bromine and Iodine Chemistry in a Global Chemistry-climate Model: Description and Evaluation of Very Short-lived Oceanic Sources : Volume 11, Issue 10 (06/10/2011). Retrieved from

Description: Laboratory for Atmospheric and Climate Science (CIAC), CSIC, Toledo, Spain. The global chemistry-climate model CAM-Chem has been extended to incorporate an expanded bromine and iodine chemistry scheme that includes natural oceanic sources of very short-lived (VSL) halocarbons, gas-phase photochemistry and heterogeneous reactions on aerosols. Ocean emissions of five VSL bromocarbons (CHBr3, CH2Br2, CH2BrCl, CHBrCl2, CHBr2Cl) and three VSL iodocarbons (CH2ICl, CH2IBr, CH2I2) have been parameterised by a biogenic chlorophyll-a (chl-a) dependent source in the tropical oceans (20° N–20° S) as well as constant oceanic fluxes with a 2.5 coast-to-ocean emission ratio for the extratropics (latitudinal bands 20°–50° and 50°–90° in both hemispheres). Top-down emission estimates of bromocarbons have been derived using available measurements in the troposphere and lower stratosphere, while iodocarbons have been constrained with observations in the marine boundary layer (MBL). Emissions of CH3I are based on a previous inventory and the longer lived CH3Br is set to a lower boundary condition. The global oceanic emissions estimated for the most abundant VSL bromocarbons – 533 Gg yr−1 for CHBr3 and 67.3 Gg yr−1 for CH2Br2 – are within the range of previous estimates. Overall the latitudinal and vertical distributions of modelled bromocarbons are in good agreement with observations. Nevertheless, we identify some issues such as the reduced number of aircraft observations to validate models in the Southern Hemisphere, the overestimation of CH2Br2 in the upper troposphere – lower stratosphere and the underestimation of CH3I in the same region. Despite the difficulties involved in the global modelling of the most short-lived iodocarbons (CH2ICl, CH2IBr, CH2I2), modelled results are in good agreement with published observations in the MBL. Finally, sensitivity simulations show that knowledge of the diurnal emission cycle for these species, in particular for CH2I2, is key to assess their global source strength.

Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources

Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Rossi, M. J., and Troe, J.: Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement VIII, Halogen Species Evaluation for Atmospheric Chemistry, J. Phys. Chem. Ref. Data, 29, 167, doi:10.1063/1.556058, 2000.; Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson Jr, R. F., Hynes, R. G., Jenkin, M. E., Kerr, J. A., Rossi, M. J., and Troe, J.: Summary of evaluated kinetic and photochemical data for atmospheric chemistry: web version February 2006, available at:, 2006.; Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species, Atmos. Chem. Phys., 8, 4141–4496, doi:10.5194/acp-8-4141-2008, 2008.; Atlas, E., Pollock, W., Greenberg, J., Heidt, L., and Thompson, A. M.: Alkyl nitrates, nonmethane hydrocarbons, and halocarbon gases over the equatorial Pacific Ocean during Saga-3, J. Geophys. Res., 98, 16933–16947, 1993.; Baker, J. M., Sturges, W. T., Sugier, J., Sunnenberg, G., Lovett, A. A., Reeves, C. E., Nightingale, P. D., and Penkett, S. A.: Emissions of CH3Br, organochlorines, and organoiodines from temperate macroalgae, Chemosphere – Global Change Science, 3, 93–106, 2001.; Bell, N., Hsu, L., Jacob, D. J., Schultz, M. G., Blake, D. R., Butler, J. H., King, D. B., Lobert, J. M., and Maier-Reimer, E.: Methyl iodide: Atmospheric budget and use as a tracer of marine convection in global models, J. Geophys. Res., 107, 4340, doi:10.1029/2001JD001151, 2002.; Bilde, M., Wallington, T. J., Ferronato, C., Orlando, J. J., Tyndall, G. S., Estupiñan, E., and Haberkorn, S.: Atmospheric Chemistry of CH2BrCl, CHBrCl2, CHBr2Cl, CF3CHBrCl, and CBr2Cl2, J. Phys. Chem. A, 102, 1976–1986, 1998.; Bloss, W. J., Lee, J. D., Johnson, G. P., Sommariva, R., Heard, D. E., Saiz-Lopez, A., Plane, J. M. C., McFiggans, G., Coe, H., Flynn, M., Williams, P., Rickard, A. R., and Fleming, Z. L.: Impact of halogen monoxide chemistry upon boundary layer OH and HO2 concentrations at a coastal site, Geophys. Res. Lett., 32, L06814, doi:10.1029/2004GL022084, 2005.; Boucher, O., Moulin, C., Belviso, S., Aumont, O., Bopp, L., Cosme, E., von Kuhlmann, R., Lawrence, M. G., Pham, M., Reddy, M. S., Sciare, J., and Venkataraman, C.: DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation, Atmos. Chem. Phys., 3, 49–65, doi:10.5194/acp-3-49-2003, 2003.; Brioude, J., Portmann, R. W., Daniel, J. S., Cooper, O. R., Frost, G. J., Rosenlof, K. H., Granier, C., Ravishankara, A. R., Montzka, S. A., and Stohl, A.: Variations in ozone depletion potentials of very short-lived substances with season and emission region, Geophys. Res. Lett., 37, L19804, doi:10.1029/2010GL044856, 2010.; Butler, J. H., King, D. B., Lobert, J. M., Montzka, S. A., Yvon-Lewis, S. A., Hall, B. D., Nicola, J., Warwick, N. J., Mondeel, D. J., Aydin, M., and Elkins, J. W.: Oceanic distributions and emissions of short-lived halocarbons, Global Biogeochem. Cy., 21, GB1023, doi:10.102


Click To View

Additional Books

  • Evaluation of Tropospheric So2 Retrieved... (by )
  • Spatial, Temporal, and Vertical Variabil... (by )
  • Tropopause Referenced Ozone Climatology ... (by )
  • Global Modelling of Secondary Organic Ae... (by )
  • Co2 Flux History 1982–2001 Inferred from... (by )
  • Detection of Regional Scale Sea-to-air O... (by )
  • Contributions of Regional and Interconti... (by )
  • Assessing Positive Matrix Factorization ... (by )
  • Atmospheric Polarimetric Effects on Gnss... (by )
  • Evaluation of Ecmwf Water Vapour Fields ... (by )
  • Distribution of Gaseous and Particulate ... (by )
  • Corrigendum to the Relative Importance o... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.