World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Simulation of Field-aligned H+ and He+ Dynamics During Late-stage Plasmasphere Refilling : Volume 26, Issue 6 (11/06/2008)

By Krall, J.

Click here to view

Book Id: WPLBN0004001752
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Simulation of Field-aligned H+ and He+ Dynamics During Late-stage Plasmasphere Refilling : Volume 26, Issue 6 (11/06/2008)  
Author: Krall, J.
Volume: Vol. 26, Issue 6
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2008
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Huba, J. D., Fedder, J. A., & Krall, J. (2008). Simulation of Field-aligned H+ and He+ Dynamics During Late-stage Plasmasphere Refilling : Volume 26, Issue 6 (11/06/2008). Retrieved from http://members.worldlibrary.net/


Description
Description: Plasma Physics Div., Naval Research Lab., Code 6790, 4555 Overlook Ave., SW, Washington, D.C., 20375-5346, USA. The refilling of the plasmasphere for 3≤L≤4 following a model storm is simulated over long times (days) using the NRL ionosphere code SAMI2 (Sami2 is Another Model of the Ionosphere). Refilling is dependent on the supply of topside H+ and He+ ions with the result that H+ refilling rates decrease and He+ refilling rates generally increase with increasing F10.7 index. Both early- and late-stage refilling are affected by net ion flows from the warmer to the colder geomagnetic hemisphere. When these flows are strong, the ability of the winter helium bulge to increase He+ refilling rates is suppressed. When neutral winds are not included, refilling rates fall, typically by a factor of two. In most cases, late-stage He+ refilling is proportional to H+ refilling, with typical He+/H+ density ratios of 2% for solar minimum and 10% for solar maximum. For high values of F10.7, He+ refilling exhibits a strong diurnal variation so that the He+/H+ density ratio varies by as much as a factor of two during late-stage refilling. Finally if the plasmasphere is left undisturbed, the H+ density can refill for as long as five weeks at L=3 and ten weeks at L=4, with saturation densities nearly an order of magnitude greater than typical observed densities. This confirms that the plasmasphere at these L values rarely obtains saturation.

Summary
Simulation of field-aligned H+ and He+ dynamics during late-stage plasmasphere refilling

Excerpt
Angerami, J. J. and Thomas, J. O.: The distribution of electrons and ions in the Earth's exosphere, J. Geophys. Res., 69, 4537–4560, 1964.; Banks, P. M., Nagy, A. F., and Axford, W. I.: Dynamical behavior of thermal protons in the mid-latitude ionosphere and magnetosphere, Planet. Space Sci., 19, 1053–1067, 1971.; Burch, J. L.: IMAGE mission overview, Space Sci. Rev., 91, 1–14, 2000.; Carpenter, D. L.: Whistler studies of the plasmapause in the magnetosphere, I: Temporal variations in the position of the knee and some evidence on plasma motions near the knee, J. Geophys. Res., 71, 693–709, 1966.; Chandler, M. O. and Chappell, C. R.: Observations of the flow of the H+ and He+ along magnetic field lines in the plasmasphere, J. Geophys. Res., 91, 8847–8860, 1986.; Chi, P. J., Russell, C. T., Foster, J. C., Moldwin, M. B., Engebretson, M. J., and Mann, I. R.: Density enhancement in plasmasphere-ionosphere plasma during the 2003 Halloween Superstorm: Observations along the 330th magnetic meridian in North America, Geophys. Res. Lett., 32, L03S07, doi:10.1029/2004GL021722, 2005.; Corcuff, P., Corcuff, Y., Carpenter, D. L., Chappell, C. R., Vigneron, J., and Kleimenova, N.: La plasmasphere en periode de recouvrement magnetique. Etude combinee des donnees des satellites OGO 4, OGO 5, et des sifflements recus au sol, Ann. Geophys., 28, 679–696, 1972.; Denton, M. H., Bailey, G. J., Wilford, C. R., Rodger, A. S., and Venkatraman, S.: He$^+$ dominance in the plasmasphere during geomagnetically disturbed periods: 1. Observational results, Ann. Geophys., 20, 461–470, 2002.; Eviatar, A., Lenchek, A. M., and Singer, S. F.: Distribution of density in an ion-exosphere of a nonrotating planet, Phys. Fluids, 7, 1775–1779, 1964.; Goldstein, J., Sandel, B. R., Forrester, W. T., and Reiff, P. H.: IMF-Driven plasmasphere erosion of 10 July 2000, Geophys. Res. Lett., 30, 1146, doi:10.1029/2002GL016478, 2003b.; Guiter, S. M. and Gombosi, T. I.: The role of high-speed plasma flows in plasmaspheric refilling, J. Geophys. Res., 95, 10 427–10 440, 1990.; Hedin, A. E.: MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649–4662, 1987.; Hedin, A. E., Biondi, M. A., Burnside, R. G., Hernandez, G., Johnson, R. M., Killeen, T. L., Mazaudier, C., Meriwether, J. W., Salah, J. E., Sica, R. J., Smith, R. W., Spencer, N. W., Wickwar, V. B., and Virdi, T. S.: Revised global model of the thermosphere winds using satellite and ground-based observations, J. Geophys. Res., 96, 7657–7688, 1991.; Horwitz, J. L., Comfort, R. H., and Chappell, C. R.: A statistical characterization of plasmasphere density structure and boundary locations, J. Geophys. Res., 95, 7937–7947, 1990a.; Lockwood, M., Cowley, S. W. H., and Freeman, M. P.: The excitation of plasma convection in the high-latitude ionosphere, J. Geophys. Res., 95, 7961–7972, 1990.; McIlwain, C. E.: Magnetic coordinates, Space Sci. Rev., 5, 585–598, 1966.; Horwitz, J. L., Comfort, R. H., Richards, P. G., Chandler, M. O., Chappell, C. R., Anderson, P., Hanson, W. B., and Brace, L. H.: Plasmasphere-ionosphere coupling 2. Ion composition measurements at plasmaspheric and ionospheric altitudes with modeling results, J. Geophys. Res., 95, 7949–7959, 1990b.; Huba, J. D., Joyce, G., and Fedder, J. A.: SAMI2 (Sami2 is Another Model of the Ionosphere): A New Low-Latitude Ionosphere Model J. Geophys. Res., 105, 23 035–23 053, 2000a.; Huba, J. D., Joyce, G., and Fedder, J. A.: Ion sound waves in the topside equatorial ionosphere, Geophys. Res. Lett., 27, 3181–3184, 2000b.; Huba, J. D., Joyce, G., Sazykin, S., Wolf, R., and Spiro, R.: Simulation study of penetration electric fields in the low- to mid-latitude ionosphere, Geophys. Res. Lett., 32, L23101, doi:10.1029/2005GL024162, 2005.; Huba, J. D. and Joyce, G.: Open Source Project to aid ionospheric research, EOS

 

Click To View

Additional Books


  • Polar Cap Convection/Precipitation State... (by )
  • Correlated Interball/Ground-based Observ... (by )
  • Climatology of Planetary Wave Type Oscil... (by )
  • Density Enhancements Associated with Equ... (by )
  • Characteristics of Merging at the Magnet... (by )
  • Faraday Polarization Fluctuations and Th... (by )
  • Ion Multi-nose Structures Observed by Cl... (by )
  • Measurement of Ambient NH3 Over Bay of B... (by )
  • A Solar Cycle of Spacecraft Anomalies Du... (by )
  • Statistical Signature of Active D-region... (by )
  • Solar Off-limb Line Widths with Sumer: R... (by )
  • Mhd Aspect of Current Sheet Oscillations... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.